아마추어 수학자가 수학계의 ‘60년 난제’를 해결했다
반복되지 않는 단 하나의 패턴으로 평면을 메울 수 있다.

영국의 아마추어 수학자가 수학계의 60년 난제를 해결했다.
금일 국제학술지는 <네이처>는 영국의 아마추어 수학자 데이비드 스미스와 그의 연구팀이 반복되지 않는 단 하나의 모양으로 평면을 메울 수 있는 패턴을 발견했다고 밝혔다. 13각형의 ‘비주기적 타일’로 이루어진 해당 패턴은 타일을 뒤집지 않고서도 반복 없이 평면을 무한하게 채울 수 있다. 연구팀은 이를 알버트 아인슈타인의 이름을 따 ‘아인슈타인’ 모양이라고 명명했다. 이는 독일어로 ‘하나의 돌’ (ein + stein)을 뜻하는 중의적 의미를 갖고 있기도 하다.
비주기적 타일을 발견하는 것은 1960년대부터 수학계의 난제였다. 1963년 미국의 수학자 로버트 버거가 2만426가지 도형을 동원하면 반복 없는 패턴으로 평면을 장식할 수 있다는 점을 증명한 이후, 1974년 옥스퍼드대 교수 로저 펜로즈가 두 가지 도형으로 평면을 메우는 데 성공한 바 있다. 그러나 한 가지 도형만으로 평면을 채운 것은 이번이 최초다.